metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

catena-Poly[[(2,9-dimethyl-1,10-phenanthroline- $\kappa^2 N, N'$)lead(II)]-di- μ -2-hydroxybenzoato- $\kappa^{3}O^{1}, O^{1'}: O^{2}; \kappa^{3}O^{2}: O^{1}, O^{1'}]$

Xiao-Peng Xuan* and Pei-Zheng Zhao

Department of Chemistry, Henan Normal University, Xinxiang 453007, People's Republic of China Correspondence e-mail: xpxuan@henannu.edu.cn

Received 23 August 2007; accepted 18 September 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.018; wR factor = 0.044; data-to-parameter ratio = 13.7.

In the title polymeric comound, $[Pb(C_7H_5O_3)_2(C_{14}H_{12}N_2)]_n$ the Pb^{II} atom is located on a twofold rotation axis and is coordinated by two N atoms from one 2,9-dimethyl-1,10phenanthroline (dmphen) ligand and six O atoms from four 2hydroxybenzoate anions. The compound forms a zigzag polymeric chain along the c axis through bridging hydroxy groups of two 2-hydroxybenzoate ligands. The crystal packing is stabilized by the intramolecular hydrogen bonding and $\pi - \pi$ interactions between dmphen rings of neighboring molecules, with a distance between the ring planes of 3.385(3) Å.

Related literature

For information on the coordination chemistry of lead, see: Kovalevsky et al. (2003).

Experimental

Crystal data

$[Pb(C_7H_5O_3)_2(C_{14}H_{12}N_2)]$	$V = 2501.2 (4) \text{ Å}^3$
$M_r = 689.67$	Z = 4
Orthorhombic, Pbcn	Mo $K\alpha$ radiation
a = 19.6407 (19) Å	$\mu = 6.79 \text{ mm}^{-1}$
b = 12.9690 (12) Å	T = 293 (2) K
c = 9.8195 (9) Å	$0.24 \times 0.15 \times 0.12$ mm

Data collection

Bruker SMART CCD area-detector	17366 measured reflections
diffractometer	2323 independent reflection
Absorption correction: multi-scan	1682 reflections with $I > 2\sigma$
(SADABS; Bruker, 1997)	$R_{\rm int} = 0.034$
$T_{\min} = 0.241, T_{\max} = 0.443$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.018$	169 parameters
$vR(F^2) = 0.044$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.44 \text{ e } \text{\AA}^{-3}$
2323 reflections	$\Delta \rho_{\rm min} = -0.68 \text{ e } \text{\AA}^{-3}$

independent reflections

reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O3−H3···O2	0.82	1.77	2.507 (4)	148

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Financial support from the Science Fund of Henan Province for Distinguished Young Scholars (No. 07410051005) and the National Natural Science Foundation of the Education Department of Henan Province (2006150013) is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2340).

References

Bruker (1997). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Kovalevsky, A. Y., Gembicky, M., Novozhilova, I. V. & Coppens, P. (2003). Inorg. Chem. 42, 8794-8802.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

supplementary materials

Acta Cryst. (2007). E63, m2678 [doi:10.1107/S1600536807045941]

catena-Poly[[(2,9-dimethyl-1,10-phenanthroline- $\pi^2 N, N'$)lead(II)]-di- μ -2-hydroxybenzoato- $\pi^3 O^1, O^1: O^2; \pi^3 O^2: O^1, O^1'$]

X.-P. Xuan and P.-Z. Zhao

Comment

The coordination chemistry of lead(II) with N and O donor ligands has been investigated in the past decade and frequently discussed as lead is an environmental pollutant with severe toxic effects (Kovalevsky *et al.*2003). Recently, we obtained the title lead(II) complex, (I), by reaction of lead acetate, sodium salicylate and dmphen in ethanol/water mixtures, and its crystal structure is reported here.

A segment of the polymeric structure of (I) is illustrated in Fig.1. The Pb^{II} atom, which lies on a twofold axis, is coordinated by two N atoms from dmphen, two O atoms from hydroxy groups of the two 2-hydroxy-benzoate ligands, and four O atoms of carboxylate groups from another two 2-hydroxy-benzoate ligands (Figure 1). The dmphen ligand lies about the twofold axis and chelates to the Pb^{II} atom with Pb—N distances of 2.516 (3) Å. The six Pb—O bonds are divided into three groups with the different bond distances of 2.656 (3), 2.695 (3) and 2.887 (4) Å, respectively. The molecular structure forms a one-dimensional chain linked through two bridging 2-hydroxy-benzoate groups. An intra-molecular hydrogen bond between the coordinated hydroxy group and carboxyl O atom (Figure 1 and Table 1) stabilizes the conformation of the hydroxybenzoate ligands. Adjacent chains are connected by π - π interactions with a distance of 3.385 (3)Å between dmphen rings of neighboring molecules, forming a three-dimensional framework structure (Figure 2).

Experimental

To a solution of 2,9-dimethyl-1,10-phenanthroline ($C_{14}H_{12}N_2$ '0.5H₂O, 0.1088 g, 0.5 mmol), 2-hydrooxy-benzoate (0.0696 g, 0.5 mmol) and sodium hydroxide (0.0185 g,0.5 mmol) in ethanol/water (*v*:*v*=1:10, 11 ml) was added a solution of Pb(CH₃COO)₂ (0.1902 g, 0.5 mmol) in distilled water (5 ml). The resulting solution was stirred for 4 h at 323 K and filtered. Colorless single crystals of (I) were obtained by slow evaporation of the filtrate over 4 days.

Refinement

The carbon-bound H atoms were placed in calculated positions (C—H = 0.93 Å), and were included in the refinement in the riding model approximation, with $U_{iso}(H) = 1.2 U_{eq}(C)$. The hydroxyl H atoms were placed in calculated positions (O—H = 0.82 Å) and refined with free torsion angles to fit the electron density, with $U_{iso}(H) = 1.5 U_{eq}(O)$.

Figures

Fig. 1. A segment of the polymeric structure of (I). hydrogen bonds are shown as dashed lines. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) -x + 1, y, -z + 5/2; (ii) x, -y + 1, z + 1/2; (iii) -x + 1, -y + 1, -z + 2]

Fig. 2. Crystal packing of (I) showing the π - π interactions between the dmphen rings.

catena-Poly[(2,9-dimethyl-1,10-phenanthroline- $\kappa^2 N, N'$)lead(II)]- di- μ -2-hydroxybenzoato- $\kappa^3 O^1, O^{1'}: O^2; \kappa^3 O^2: O^1, O^{1'}]$

Crystal data	
$[Pb(C_7H_5O_3)_2(C_{14}H_{12}N_2)]$	$F_{000} = 1336$
$M_r = 689.67$	$D_{\rm x} = 1.831 {\rm ~Mg~m}^{-3}$
Orthorhombic, Pbcn	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2n 2ab	Cell parameters from 5195 reflections
a = 19.6407 (19) Å	$\theta = 2.8 - 26.9^{\circ}$
b = 12.9690 (12) Å	$\mu = 6.79 \text{ mm}^{-1}$
c = 9.8195 (9) Å	T = 293 (2) K
$V = 2501.2 (4) \text{ Å}^3$	Block, yellow
<i>Z</i> = 4	$0.24\times0.15\times0.12~mm$
Data collection	

Data collection

Bruker SMART CCD area-detector diffractometer	2323 independent reflections
Radiation source: fine-focus sealed tube	1682 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.034$
T = 293(2) K	$\theta_{\text{max}} = 25.5^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.8^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 1997)	$h = -23 \rightarrow 23$
$T_{\min} = 0.241, T_{\max} = 0.443$	$k = -15 \rightarrow 15$
17366 measured reflections	$l = -11 \rightarrow 11$

Refinement

Refinement on F^2

Secondary atom site location: difference Fourier map

Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.018$	H-atom parameters constrained
$wR(F^2) = 0.044$	$w = 1/[\sigma^2(F_o^2) + (0.0159P)^2 + 3.2022P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.04	$(\Delta/\sigma)_{\text{max}} = 0.002$
2323 reflections	$\Delta \rho_{max} = 0.44 \text{ e} \text{ Å}^{-3}$
169 parameters	$\Delta \rho_{min} = -0.68 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F² against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F², conventional *R*-factors *R* are based on F, with F set to zero for negative F². The threshold expression of $F^2 > 2sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F² are statistically about twice as large as those based on F, and *R*factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Pb1	0.5000	0.681947 (12)	1.2500	0.02840 (7)
O1	0.39415 (14)	0.73146 (19)	1.0950 (3)	0.0421 (7)
O2	0.46065 (14)	0.6121 (2)	1.0038 (3)	0.0509 (7)
O3	0.41486 (16)	0.4894 (2)	0.8289 (3)	0.0676 (10)
H3	0.4414	0.5131	0.8854	0.101*
N1	0.54686 (15)	0.8440 (2)	1.1448 (3)	0.0283 (7)
C1	0.59274 (19)	0.8427 (3)	1.0457 (4)	0.0330 (8)
C2	0.61983 (19)	0.9346 (3)	0.9934 (4)	0.0410 (9)
H2	0.6525	0.9320	0.9249	0.049*

supplementary materials

C3	0.5986 (2)	1.0276 (3)	1.0422 (4)	0.0412 (10)
H3A	0.6164	1.0884	1.0069	0.049*
C4	0.54957 (19)	1.0310 (3)	1.1463 (4)	0.0325 (8)
C5	0.52573 (17)	0.9357 (3)	1.1951 (3)	0.0271 (7)
C6	0.5238 (2)	1.1256 (3)	1.2008 (4)	0.0408 (10)
H6	0.5401	1.1880	1.1675	0.049*
C7	0.6143 (2)	0.7411 (3)	0.9886 (4)	0.0452 (10)
H7A	0.6383	0.7027	1.0571	0.068*
H7B	0.6437	0.7521	0.9118	0.068*
H7C	0.5749	0.7030	0.9601	0.068*
C8	0.3607 (2)	0.5531 (3)	0.8161 (4)	0.0420 (9)
C9	0.35326 (18)	0.6393 (3)	0.9001 (4)	0.0309 (8)
C10	0.29722 (19)	0.7031 (3)	0.8802 (4)	0.0418 (10)
H10	0.2917	0.7608	0.9353	0.050*
C11	0.2497 (2)	0.6826 (3)	0.7808 (4)	0.0505 (12)
H11	0.2128	0.7264	0.7677	0.061*
C12	0.2578 (2)	0.5956 (4)	0.7005 (5)	0.0552 (12)
H12	0.2257	0.5810	0.6336	0.066*
C13	0.3120 (2)	0.5310 (3)	0.7180 (4)	0.0555 (12)
H13	0.3163	0.4723	0.6642	0.067*
C14	0.40548 (19)	0.6634 (3)	1.0067 (4)	0.0326 (8)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pb1	0.03391 (11)	0.02267 (9)	0.02861 (10)	0.000	-0.00428 (10)	0.000
01	0.0499 (17)	0.0371 (15)	0.0393 (16)	0.0065 (13)	-0.0091 (13)	-0.0094 (13)
O2	0.0411 (17)	0.0631 (18)	0.0486 (17)	0.0182 (15)	-0.0138 (14)	-0.0164 (15)
O3	0.076 (2)	0.0532 (19)	0.073 (2)	0.0292 (17)	-0.0294 (19)	-0.0326 (17)
N1	0.0315 (17)	0.0251 (15)	0.0284 (16)	0.0009 (13)	0.0007 (13)	-0.0006 (12)
C1	0.033 (2)	0.032 (2)	0.034 (2)	0.0013 (17)	0.0004 (17)	-0.0017 (16)
C2	0.039 (2)	0.044 (2)	0.040 (2)	-0.0061 (19)	0.0102 (18)	0.0028 (19)
C3	0.047 (2)	0.036 (2)	0.041 (2)	-0.0098 (19)	0.0067 (19)	0.0072 (17)
C4	0.040 (2)	0.0274 (19)	0.0303 (19)	-0.0050 (17)	-0.0022 (16)	0.0037 (16)
C5	0.0288 (17)	0.0301 (19)	0.0225 (16)	0.0018 (15)	0.0007 (14)	-0.0014 (15)
C6	0.055 (3)	0.0255 (19)	0.041 (2)	-0.0057 (17)	-0.0036 (17)	0.0023 (16)
C7	0.043 (3)	0.043 (2)	0.050 (3)	0.004 (2)	0.015 (2)	-0.003 (2)
C8	0.047 (2)	0.038 (2)	0.041 (2)	0.0015 (19)	-0.009 (2)	-0.0066 (19)
C9	0.030 (2)	0.0321 (19)	0.0305 (19)	-0.0013 (16)	-0.0011 (16)	0.0034 (16)
C10	0.035 (2)	0.046 (2)	0.044 (2)	0.0038 (19)	0.0001 (19)	-0.0031 (19)
C11	0.032 (2)	0.067 (3)	0.053 (3)	0.002 (2)	-0.0090 (19)	0.008 (2)
C12	0.049 (3)	0.067 (3)	0.049 (3)	-0.015 (2)	-0.017 (2)	-0.002 (2)
C13	0.063 (3)	0.051 (3)	0.052 (3)	-0.006 (2)	-0.015 (2)	-0.013 (2)
C14	0.037 (2)	0.0318 (19)	0.0295 (19)	-0.0016 (17)	-0.0012 (17)	0.0040 (16)

Geometric parameters (Å, °)

Pb1—N1	2.516 (3)	C3—C4	1.405 (5)

Pb1—N1 ⁱ	2.516 (3)	С3—НЗА	0.9300
Pb1—O1	2.656 (3)	C4—C5	1.405 (5)
Pb1—O1 ⁱ	2.656 (3)	C4—C6	1.432 (5)
Pb1—O2	2.695 (3)	C5—C5 ⁱ	1.478 (7)
Pb1—O2 ⁱ	2.695 (3)	C6—C6 ⁱ	1.344 (8)
Pb1—O3 ⁱⁱ	2.887 (3)	С6—Н6	0.9300
Pb1—O3 ⁱⁱⁱ	2.887 (3)	С7—Н7А	0.9600
Pb1-C14	3.035 (4)	С7—Н7В	0.9600
Pb1—C14 ⁱ	3.035 (4)	С7—Н7С	0.9600
O1—C14	1.257 (4)	C8—C13	1.387 (5)
O2—C14	1.272 (4)	C8—C9	1.397 (5)
O3—C8	1.353 (4)	C9—C10	1.390 (5)
O3—Pb1 ⁱⁱⁱ	2.887 (3)	C9—C14	1.499 (5)
O3—H3	0.8200	C10—C11	1.377 (5)
N1—C1	1.326 (4)	C10—H10	0.9300
N1—C5	1.353 (4)	C11—C12	1.385 (6)
C1—C2	1.402 (5)	С11—Н11	0.9300
C1—C7	1.495 (5)	C12—C13	1.366 (6)
C2—C3	1.364 (5)	C12—H12	0.9300
С2—Н2	0.9300	C13—H13	0.9300
$N1$ — $Pb1$ — $N1^1$	66.71 (13)	C1—N1—Pb1	122.6 (2)
N1—Pb1—O1	81.32 (9)	C5—N1—Pb1	118.2 (2)
N1 ¹ —Pb1—O1	75.34 (8)	N1—C1—C2	121.1 (3)
N1—Pb1—O1 ⁱ	75.34 (8)	N1—C1—C7	118.6 (3)
N1 ⁱ —Pb1—O1 ⁱ	81.32 (9)	C2—C1—C7	120.3 (3)
O1—Pb1—O1 ⁱ	152.01 (11)	C3—C2—C1	120.4 (4)
N1—Pb1—O2	91.01 (9)	С3—С2—Н2	119.8
N1 ⁱ —Pb1—O2	122.98 (9)	С1—С2—Н2	119.8
O1—Pb1—O2	48.90 (8)	C2—C3—C4	119.5 (4)
O1 ⁱ —Pb1—O2	145.09 (8)	С2—С3—НЗА	120.2
N1—Pb1—O2 ⁱ	122.97 (9)	C4—C3—H3A	120.2
N1 ⁱ —Pb1—O2 ⁱ	91.01 (9)	C5—C4—C3	116.7 (3)
O1—Pb1—O2 ⁱ	145.09 (8)	C5—C4—C6	120.6 (3)
O1 ⁱ —Pb1—O2 ⁱ	48.90 (8)	C3—C4—C6	122.7 (3)
O2—Pb1—O2 ⁱ	140.70 (12)	N1C5C4	123.1 (3)
N1—Pb1—O3 ⁱⁱ	164.79 (9)	N1—C5—C5 ⁱ	118.42 (19)
N1 ⁱ —Pb1—O3 ⁱⁱ	108.72 (10)	C4—C5—C5 ⁱ	118.5 (2)
O1—Pb1—O3 ⁱⁱ	83.49 (8)	C6 ⁱ —C6—C4	121.0 (2)
O1 ⁱ —Pb1—O3 ⁱⁱ	119.06 (8)	C6 ⁱ —C6—H6	119.5
O2—Pb1—O3 ⁱⁱ	79.39 (9)	С4—С6—Н6	119.5
O2 ⁱ —Pb1—O3 ⁱⁱ	70.51 (8)	С1—С7—Н7А	109.5
N1—Pb1—O3 ⁱⁱⁱ	108.72 (10)	С1—С7—Н7В	109.5
N1 ⁱ —Pb1—O3 ⁱⁱⁱ	164.79 (9)	H7A—C7—H7B	109.5

supplementary materials

O1—Pb1—O3 ⁱⁱⁱ	119.06 (8)	С1—С7—Н7С	109.5
O1 ⁱ —Pb1—O3 ⁱⁱⁱ	83.49 (8)	Н7А—С7—Н7С	109.5
O2—Pb1—O3 ⁱⁱⁱ	70.51 (8)	Н7В—С7—Н7С	109.5
O2 ⁱ —Pb1—O3 ⁱⁱⁱ	79.39 (9)	O3—C8—C13	118.7 (4)
O3 ⁱⁱ —Pb1—O3 ⁱⁱⁱ	79.34 (14)	03—C8—C9	121.1 (3)
N1—Pb1—C14	88.10 (9)	C13—C8—C9	120.2 (4)
N1 ⁱ —Pb1—C14	99.53 (10)	C10—C9—C8	118.4 (3)
O1—Pb1—C14	24.37 (8)	C10—C9—C14	121.0 (3)
O1 ⁱ —Pb1—C14	161.67 (9)	C8—C9—C14	120.5 (3)
O2—Pb1—C14	24.75 (8)	C11—C10—C9	121.4 (4)
O2 ⁱ —Pb1—C14	148.74 (9)	С11—С10—Н10	119.3
O3 ⁱⁱ —Pb1—C14	78.23 (9)	С9—С10—Н10	119.3
O3 ⁱⁱⁱ —Pb1—C14	94.70 (9)	C10—C11—C12	118.9 (4)
N1—Pb1—C14 ⁱ	99.53 (10)	C10—C11—H11	120.6
$N1^{i}$ —Pb1—C14 ⁱ	88.10 (9)	C12—C11—H11	120.6
O1—Pb1—C14 ⁱ	161.67 (9)	C13—C12—C11	121.2 (4)
$O1^{i}$ —Pb1—C14 ⁱ	24.37 (8)	C13—C12—H12	119.4
O2—Pb1—C14 ⁱ	148.74 (9)	C11—C12—H12	119.4
O2 ⁱ —Pb1—C14 ⁱ	24.75 (8)	C12—C13—C8	119.8 (4)
O3 ⁱⁱ —Pb1—C14 ⁱ	94.70 (9)	C12—C13—H13	120.1
O3 ⁱⁱⁱ —Pb1—C14 ⁱ	78.23 (9)	C8—C13—H13	120.1
C14—Pb1—C14 ⁱ	170.91 (13)	O1—C14—O2	122.3 (3)
C14—O1—Pb1	95.0 (2)	O1—C14—C9	120.5 (3)
C14—O2—Pb1	92.7 (2)	O2—C14—C9	117.3 (3)
C8—O3—Pb1 ⁱⁱⁱ	154.2 (2)	O1—C14—Pb1	60.66 (19)
C8—O3—H3	109.5	O2—C14—Pb1	62.50 (19)
Pb1 ⁱⁱⁱ —O3—H3	95.9	C9—C14—Pb1	170.1 (2)
C1—N1—C5	119.1 (3)		
N1—Pb1—O1—C14	104.8 (2)	Pb1—N1—C5—C4	178.6 (3)
N1 ⁱ —Pb1—O1—C14	172.9 (2)	C1—N1—C5—C5 ⁱ	179.6 (4)
O1 ⁱ —Pb1—O1—C14	138.4 (2)	Pb1—N1—C5—C5 ⁱ	-2.5 (5)
O2—Pb1—O1—C14	5.8 (2)	C3—C4—C5—N1	-1.3 (5)
O2 ⁱ —Pb1—O1—C14	-117.2 (2)	C6—C4—C5—N1	178.1 (4)
O3 ⁱⁱ —Pb1—O1—C14	-75.8 (2)	C3—C4—C5—C5 ⁱ	179.8 (4)
O3 ⁱⁱⁱ —Pb1—O1—C14	-1.8 (2)	C6—C4—C5—C5 ⁱ	-0.8 (6)
C14 ⁱ —Pb1—O1—C14	-161.1 (3)	C5—C4—C6—C6 ⁱ	-0.1 (7)
N1—Pb1—O2—C14	-83.3 (2)	C3—C4—C6—C6 ⁱ	179.2 (5)
N1 ⁱ —Pb1—O2—C14	-20.6 (3)	Pb1 ⁱⁱⁱ —O3—C8—C13	6.3 (9)
O1—Pb1—O2—C14	-5.7 (2)	Pb1 ⁱⁱⁱ —O3—C8—C9	-174.0 (4)
O1 ⁱ —Pb1—O2—C14	-148.6 (2)	O3—C8—C9—C10	178.7 (4)
O2 ⁱ —Pb1—O2—C14	125.0 (2)	C13—C8—C9—C10	-1.6 (6)
O3 ⁱⁱ —Pb1—O2—C14	84.9 (2)	O3—C8—C9—C14	0.0 (6)

O3 ⁱⁱⁱ —Pb1—O2—C14	167.2 (2)	C13—C8—C9—C14	179.7 (4)			
C14 ⁱ —Pb1—O2—C14	166.4 (2)	C8—C9—C10—C11	0.1 (6)			
N1 ⁱ —Pb1—N1—C1	178.7 (3)	C14—C9—C10—C11	178.7 (3)			
O1—Pb1—N1—C1	-103.6 (3)	C9—C10—C11—C12	0.9 (6)			
O1 ⁱ —Pb1—N1—C1	92.0 (3)	C10-C11-C12-C13	-0.4 (7)			
O2—Pb1—N1—C1	-55.5 (3)	C11—C12—C13—C8	-1.1 (7)			
O2 ⁱ —Pb1—N1—C1	103.5 (3)	O3—C8—C13—C12	-178.2 (4)			
O3 ⁱⁱ —Pb1—N1—C1	-105.9 (4)	C9—C8—C13—C12	2.1 (7)			
O3 ⁱⁱⁱ —Pb1—N1—C1	14.2 (3)	Pb1-O1-C14-O2	-11.0 (4)			
C14—Pb1—N1—C1	-80.1 (3)	Pb1-01-C14-C9	168.7 (3)			
C14 ⁱ —Pb1—N1—C1	94.9 (3)	Pb1-O2-C14-O1	10.8 (4)			
N1 ⁱ —Pb1—N1—C5	0.90 (19)	Pb1	-168.9 (3)			
O1—Pb1—N1—C5	78.6 (2)	C10-C9-C14-O1	11.9 (5)			
O1 ⁱ —Pb1—N1—C5	-85.8 (2)	C8—C9—C14—O1	-169.5 (4)			
O2—Pb1—N1—C5	126.7 (2)	C10—C9—C14—O2	-168.5 (4)			
O2 ⁱ —Pb1—N1—C5	-74.2 (3)	C8—C9—C14—O2	10.2 (5)			
O3 ⁱⁱ —Pb1—N1—C5	76.3 (4)	N1—Pb1—C14—O1	-73.0 (2)			
O3 ⁱⁱⁱ —Pb1—N1—C5	-163.5 (2)	N1 ⁱ —Pb1—C14—O1	-7.0 (2)			
C14—Pb1—N1—C5	102.1 (3)	O1 ⁱ —Pb1—C14—O1	-98.1 (4)			
C14 ⁱ —Pb1—N1—C5	-82.8 (3)	O2—Pb1—C14—O1	-169.5 (4)			
C5—N1—C1—C2	0.4 (5)	O2 ⁱ —Pb1—C14—O1	101.1 (3)			
Pb1—N1—C1—C2	-177.3 (3)	O3 ⁱⁱ —Pb1—C14—O1	100.3 (2)			
C5—N1—C1—C7	-178.5 (3)	O3 ⁱⁱⁱ —Pb1—C14—O1	178.4 (2)			
Pb1—N1—C1—C7	3.8 (5)	N1—Pb1—C14—O2	96.5 (2)			
N1—C1—C2—C3	-1.0 (6)	N1 ⁱ —Pb1—C14—O2	162.5 (2)			
C7—C1—C2—C3	177.8 (4)	O1—Pb1—C14—O2	169.5 (4)			
C1—C2—C3—C4	0.4 (6)	O1 ⁱ —Pb1—C14—O2	71.4 (4)			
C2—C3—C4—C5	0.7 (5)	O2 ⁱ —Pb1—C14—O2	-89.3 (3)			
C2—C3—C4—C6	-178.7 (4)	O3 ⁱⁱ —Pb1—C14—O2	-90.2 (2)			
C1—N1—C5—C4	0.7 (5)	O3 ⁱⁱⁱ —Pb1—C14—O2	-12.1 (2)			
Symmetry codes: (i) $-x+1$, y, $-z+5/2$; (ii) x, $-y+1$, $z+1/2$; (iii) $-x+1$, $-y+1$, $-z+2$.						

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	D—H··· A
O3—H3···O2	0.82	1.77	2.507 (4)	148

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

catena-Poly[[(2,9-dimethyl-1,10-phenanthroline- $\kappa^2 N$,N')lead(II)]-di- μ -2-hydroxybenzoato- $\kappa^3 O^1$, $O^{1'}:O^2$; $\kappa^3 O^2:O^1$, $O^{1'}$]. Corrigendum

Xiao-Peng Xuan* and Pei-Zheng Zhao

Department of Chemistry, Henan Normal University, Xinxiang 453007, People's Republic of China Correspondence e-mail: xpxuan@henannu.edu.cn

Received 16 November 2007; accepted 28 November 2007

A reference in the paper by Xuan & Zhao [*Acta Cryst.* (2007), E**63**, m2678] is replaced.

In the paper by Xuan & Zhao (2007), the reference to Kovalevsky *et al.* (2003) in the *Related literature* and *Comment* should be replaced by a reference to Shimoni-Livny *et al.* (1998), as given below.

References

Kovalevsky, A. Y., Gembicky, M., Novozhilova, I. V. & Coppens, P. (2003). *Inorg. Chem.* 42, 8794–8802.

Shimoni-Livny, L., Glusker, J. P. & Bock, C. W. (1998). Inorg. Chem. 37, 1853– 1867.

Xuan, X.-P. & Zhao, P.-Z. (2007). Acta Cryst. E63, m2678.